Управление образования Артемовского городского округа Муниципальное автономное общеобразовательное учреждение Артемовского городского округа «Средняя общеобразовательная школа № 56 с углубленным изучением отдельных предметов» (МАОУ СОШ № 56) ИНН 6602003095 КПП 667701001 ул. Свободы, 82, г. Артемовский Свердловской области, 623782 тел. (34363) 57-156, 57-119; e-mail: myschool56@mail.ru УТВЕРЖДАЮ: Директор МАОУ СОШ №56 Приказ от «30» августа 2022г № 71-од Рабочая программа учебного предмета «МАТЕМАТИКА» среднее общее образование 10 класс ФГОС Приложение к основной образовательной программе среднего общего образования СОДЕРЖАНИЕ КУРСА Основная базовая программа Алгебра и начала анализа Повторение. Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно-рациональных выражений. Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков. Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности и функции y x . Графическое решение уравнений и неравенств. Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0, 30, 45, 60, 90, 180, 270 ( 0, , , , рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента. 6 4 3 2 Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции. Тригонометрические функции y cos x, y sin x, y tgx . Функция y ctgx . Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Обратные тригонометрические функции, их свойства и графики. Решение простейших тригонометрических неравенств. Степень с действительным показателем, свойства степени. Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. Логарифмические уравнения и неравенства. Логарифмическая функция и ее свойства и график. Степенная функция и ее свойства и график. Иррациональные уравнения. Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств. Взаимно обратные функции. Графики взаимно обратных функций. Уравнения, системы уравнений с параметром. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл. Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач. Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла. Геометрия Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Решение задач с помощью векторов и координат. Наглядная стереометрия. Фигуры и их изображения (куб, пирамида, призма). Основные понятия стереометрии и их свойства. Сечения куба и тетраэдра. Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. 3 Углы в пространстве. Перпендикулярность прямых и плоскостей. Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах. Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды. Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усеченном конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развертка цилиндра и конуса. Простейшие комбинации многогранников и тел вращения между собой. Вычисление элементов пространственных фигур (ребра, диагонали, углы). Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара. Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра. Объем шара. Подобные тела в пространстве. Соотношения между площадями поверхностей и объемами подобных тел. Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач. Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трем некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объемов. Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве. Вероятность и статистика. Работа с данными Повторение. Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли. Условная вероятность. Правило умножения вероятностей. Формула полной вероятности. Дискретные случайные величины и распределения. Независимые случайные величины. Распределение суммы и произведения независимых случайных величин. Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Геометрическое распределение. Биномиальное распределение и его свойства. Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение. 4 Показательное распределение, его параметры. Понятие о нормальном распределении. Параметры нормального распределения. Примеры случайных величин, подчиненных нормальному закону (погрешность измерений, рост человека). Неравенство Чебышева. Теорема Бернулли. Закон больших чисел. Выборочный метод измерения вероятностей. Роль закона больших чисел в науке, природе и обществе. Ковариация двух случайных величин. Понятие о коэффициенте корреляции. Совместные наблюдения двух случайных величин. Выборочный коэффициент корреляции. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА Изучение предмета Математика: алгебра и начала математического анализа, геометрия по данной программе способствует формированию у учащихся личностных, метапредметных и предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта среднего общего образования. Планируемые личностные результаты освоения ООП Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя: – ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность, готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы; – готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной деятельности; – готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и осмысления истории, духовных ценностей и достижений нашей страны; – готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью; – принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к собственному физическому и психологическому здоровью; – неприятие вредных привычек: курения, употребления алкоголя, наркотиков. Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству): – российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите; – уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение к государственным символам (герб, флаг, гимн); – формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской 5 идентичности и главным фактором национального самоопределения; – воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации. Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу: – гражданственность, гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности, готового к участию в общественной жизни; – признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской Федерации, правовая и политическая грамотность; – мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире; – интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или социальной организации; – готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных формах общественной самоорганизации, самоуправления, общественно значимой деятельности; – приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к национальному дост – оинству людей, их чувствам, религиозным убеждениям; – готовность обучающихся противостоять идеологии экстремизма, национализма, ксенофобии; коррупции; дискриминации по социальным, религиозным, расовым, национальным признакам и другим негативным социальным явлениям. Личностные результаты в сфере отношений обучающихся с окружающими людьми: – нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения; – принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению; – способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей, умение оказывать первую помощь; – формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия и дружелюбия); – развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности. 6 Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре: – мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству, владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных знаниях об устройстве мира и общества; – готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; – экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социальноэкономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта экологонаправленной деятельности; – эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта. Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни: – ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни; – положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей. Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений: – уважение ко всем формам собственности, готовность к защите своей собственности, – осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов; – готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных, государственных, общенациональных проблем; – потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение к разным видам трудовой деятельности; – готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей. Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся: – физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение детьми безопасности и психологического комфорта, информационной безопасности. Планируемые метапредметные результаты освоения ООП Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД). 1. Регулятивные универсальные учебные действия Выпускник научится: – самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута; – оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей, основываясь на соображениях этики и морали; – ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях; 7 – оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели; – выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты; – организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели; – сопоставлять полученный результат деятельности с поставленной заранее целью. 2. Познавательные универсальные учебные действия Выпускник научится: – искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи; – критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных источниках; – использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий, выявленных в информационных источниках; – находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития; – выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов действия; – выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения; – менять и удерживать разные позиции в познавательной деятельности. 3. Коммуникативные универсальные учебные действия Выпускник научится: – осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных симпатий; – при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик, исполнитель, выступающий, эксперт и т.д.); – координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия; – развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств; – распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную коммуникацию, избегая личностных оценочных суждений. 8 Планируемые предметные результаты освоения ООП Результаты базового уровня ориентированы на общую функциональную грамотность, получение компетентностей для повседневной жизни и общего развития. Эта группа результатов предполагает: – понимание предмета, ключевых вопросов и основных составляющих элементов изучаемой предметной области, что обеспечивается не за счет заучивания определений и правил, а посредством моделирования и постановки проблемных вопросов культуры, характерных для данной предметной области; – умение решать основные практические задачи, характерные для использования методов и инструментария данной предметной области; – осознание рамок изучаемой предметной области, ограниченности методов и инструментов, типичных связей с некоторыми другими областями знания. Раздел Цели освоения предмета Базовый уровень «Проблемно-функциональные результаты» I. Выпускник научится III. Выпускник получит возможность научиться Для использования в повседневной жизни и Для развития мышления, использования в повседневной обеспечения возможности успешного продолжения жизни образования по специальностям, не связанным с и обеспечения возможности успешного продолжения прикладным использованием математики образования по специальностям, не связанным с прикладным использованием математики 9 Элементы теории множеств и математической логики Числа и выражения Оперировать на базовом уровне понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал; оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример; находить пересечение и объединение двух множеств, представленных графически на числовой прямой; строить на числовой прямой подмножество числового множества, заданное простейшими условиями; распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров. В повседневной жизни и при изучении других предметов: использовать числовые множества на координатной прямой для описания реальных процессов и явлений; проводить логические рассуждения в ситуациях повседневной жизни Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, Оперировать понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости; оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример; проверять принадлежность элемента множеству; находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости; проводить доказательные рассуждения для обоснования истинности утверждений. В повседневной жизни и при изучении других предметов: использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений; проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближѐнное значение 10 приближѐнное значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб; оперировать на базовом уровне понятиями: логарифм числа, тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину; выполнять арифметические действия с целыми и рациональными числами; выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел, либо логарифмы чисел; сравнивать рациональные числа между собой; оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел, логарифмов чисел в простых случаях; изображать точками на числовой прямой целые и рациональные числа; изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел, логарифмы чисел в простых случаях; выполнять несложные преобразования целых и дробно-рациональных буквенных выражений; выражать в простейших случаях из равенства одну переменную через другие; вычислять в простых случаях значения числовых и буквенных выражений, осуществляя числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб; приводить примеры чисел с заданными свойствами делимости; оперировать понятиями: логарифм числа, тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π; выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах; проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, логарифмы и тригонометрические функции; находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования; изображать схематически угол, величина которого выражена в градусах или радианах; использовать при решении задач табличные значения тригонометрических функций углов; выполнять перевод величины угла из радианной меры в градусную и обратно. 11 необходимые подстановки и преобразования; изображать схематически угол, величина которого выражена в градусах; оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов. Уравнения и неравенства В повседневной жизни и при изучении других учебных предметов: выполнять вычисления при решении задач практического характера; выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств; соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями; использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни Решать линейные уравнения и неравенства, квадратные уравнения; решать логарифмические уравнения вида log a (bx + c) = d и простейшие неравенства вида log a x < d; решать показательные уравнения, вида abx+c= d (где d можно представить в виде степени с основанием a) и простейшие неравенства вида ax < d (где d можно представить в виде степени с основанием a);. приводить несколько примеров корней простейшего тригонометрического уравнения В повседневной жизни и при изучении других учебных предметов: выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства; оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира Решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы; использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных; использовать метод интервалов для решения неравенств; использовать графический метод для приближенного решения уравнений и неравенств; 12 вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции. В повседневной жизни и при изучении других предметов: составлять и решать уравнения и системы уравнений при решении несложных практических задач Функции Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период; оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств; выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями. В повседневной жизни и при изучении других учебных предметов: составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов; использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач; уметь интерпретировать полученный при решении уравнения, неравенства или системы результат, оценивать его правдоподобие в контексте заданной реальной ситуации или прикладной задачи Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции; оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции; 13 показательная функции, тригонометрические функции; распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций; соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, логарифмической и показательной функций, тригонометрических функций с формулами, которыми они заданы; находить по графику приближѐнно значения функции в заданных точках; определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.); строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.). В повседневной жизни и при изучении других предметов: определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.); интерпретировать свойства в контексте определять значение функции по значению аргумента при различных способах задания функции; строить графики изученных функций; описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения; строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.); решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков. В повседневной жизни и при изучении других учебных предметов: определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.); интерпретировать свойства в контексте конкретной практической ситуации; определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.) 14 Элементы математического анализа Статистика и теория вероятностей, логика и комбинаторика конкретной практической ситуации Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции; определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке; решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой. В повседневной жизни и при изучении других предметов: пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах; соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.); использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения; Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции; вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций; вычислять производные элементарных функций и их комбинаций, используя справочные материалы; исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа. В повседневной жизни и при изучении других учебных предметов: решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.; интерпретировать полученные результаты Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин; иметь представление о математическом ожидании и 15 оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями; вычислять вероятности событий на основе подсчета числа исходов. В повседневной жизни и при изучении других предметов: оценивать и сравнивать в простых случаях вероятности событий в реальной жизни; читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков Текстовые задачи Решать несложные текстовые задачи разных типов; анализировать условие задачи, при необходимости строить для ее решения математическую модель; понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков; действовать по алгоритму, содержащемуся в дисперсии случайных величин; иметь представление о нормальном распределении и примерах нормально распределенных случайных величин; понимать суть закона больших чисел и выборочного метода измерения вероятностей; иметь представление об условной вероятности и о полной вероятности, применять их в решении задач; иметь представление о важных частных видах распределений и применять их в решении задач; иметь представление о корреляции случайных величин, о линейной регрессии. В повседневной жизни и при изучении других предметов: вычислять или оценивать вероятности событий в реальной жизни; выбирать подходящие методы представления и обработки данных; уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях Решать задачи разных типов, в том числе задачи повышенной трудности; выбирать оптимальный метод решения задачи, рассматривая различные методы; строить модель решения задачи, проводить доказательные рассуждения; решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата; анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не 16 условии задачи; противоречащие контексту; использовать логические рассуждения при переводить при решении задачи информацию из одной решении задачи; формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы; работать с избыточными условиями, выбирая из всей информации, данные, необходимые для В повседневной жизни и при изучении других предметов: решения задачи; решать практические задачи и задачи из других осуществлять несложный перебор возможных предметов решений, выбирая из них оптимальное по критериям, сформулированным в условии; анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту; решать задачи на расчет стоимости покупок, услуг, поездок и т.п.; решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью; решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек; решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.; использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п. 17 Геометрия В повседневной жизни и при изучении других предметов: решать несложные практические задачи, возникающие в ситуациях повседневной жизни Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб); изображать изучаемые фигуры от руки и с применением простых чертежных инструментов; делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу; извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; применять теорему Пифагора при вычислении элементов стереометрических фигур; находить объемы и площади поверхностей простейших многогранников с применением формул; распознавать основные виды тел вращения (конус, цилиндр, сфера и шар); находить объемы и площади поверхностей простейших многогранников и тел вращения с применением формул. В повседневной жизни и при изучении других Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей; применять для решения задач геометрические факты, если условия применения заданы в явной форме; решать задачи на нахождение геометрических величин по образцам или алгоритмам; делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников; извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах; применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения; описывать взаимное расположение прямых и плоскостей в пространстве; формулировать свойства и признаки фигур; доказывать геометрические утверждения; владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды); находить объемы и площади поверхностей геометрических тел с применением формул; вычислять расстояния и углы в пространстве. В повседневной жизни и при изучении других предметов: 18 Векторы и координаты в пространстве История математики предметов: соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями; использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания; соотносить площади поверхностей тел одинаковой формы различного размера; соотносить объемы сосудов одинаковой формы различного размера; оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников) Оперировать на базовом уровне понятием декартовы координаты в пространстве; находить координаты вершин куба и прямоугольного параллелепипеда Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки; использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы; находить расстояние между двумя точками, сумму векторов и произведение вектора на число, угол между векторами, скалярное произведение, раскладывать вектор по двум неколлинеарным векторам; задавать плоскость уравнением в декартовой системе координат; решать простейшие задачи введением векторного базиса Представлять вклад выдающихся математиков в развитие математики и иных научных областей; понимать роль математики в развитии России 19 Методы математики знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей; понимать роль математики в развитии России Применять известные методы при решении стандартных математических задач; замечать и характеризовать математические закономерности в окружающей действительности; приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства Использовать основные методы доказательства, проводить доказательство и выполнять опровержение; применять основные методы решения математических задач; на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ КУРСА МАТЕМАТИКИ, 10 КЛАСС Тематическое планирование по математике составлено с учетом рабочей программы воспитания. Воспитательный потенциал МАТЕМАТИКИ, как учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО: Создание благоприятных условий для развития социально значимых отношений школьников и, прежде всего, ценностных отношений: - к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда; - к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение. 20 № п/п разделы 1. Наименование темы раздела Количество часов Повторение 7ч 2. Действительные числа 13 ч 3. Введение в стереометрию 4ч 4. Параллельность прямых и плоскостей 15 ч 5. Степенная функция 14 ч 6. Показательная функция 12 ч 7. Перпендикулярность прямых и плоскостей 18 ч 8. Логарифмическая функция 18ч 9. Многогранники 12 ч 10. Тригонометрические формулы 25 ч 11. Тригонометрические уравнения 15 ч Повторение 17ч Итого 170 ч Контрольные работы Диагностическая контрольная работа Контрольная работа «Действительные числа» Контрольная работа «Параллельность прямых и плоскостей» Контрольная работа «Степенная функция» Контрольная работа «Показательная функция» Контрольная работа «Перпендикулярность прямых и плоскостей» Контрольная работа «Логарифмическая функция» Контрольная работа «Многогранники. Площадь поверхности призмы и пирамиды» Контрольная работа «Тригонометрическиеформулы» Контрольная работа «Тригонометрическиеуравнения» Итоговая контрольная работа 11 ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ ПРЕДМЕТА МАТЕМАТИКА: АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА, ГЕОМЕТРИЯ 10 КЛАСС Количество часов в неделю- 5, в год- 170 № урока Тема урока Количес тво часов 1 Повторение (7 часов) Алгебраические выражения. Квадратные корни 1 2 Линейные уравнения и неравенства, их системы 1 3-4 Функция. Свойства и графики функций 2 5-6 Квадратные уравнения и неравенства 2 7 Диагностическая работа Элементы содержания 1 Действительные числа (13 часов) 8-9 Целые и рациональные числа 2 10 Действительные числа 1 Бесконечно убывающая геометрическая прогрессия 2 Арифметический корень натуральнойстепени 3 11-12 13-15 Степень с действительным показателем, свойства степени. Решение задач с использованием свойств степеней и корней, многочленов, преобразований многочленов и дробно- рациональных выражений. 16-18 19 20 21 22 23-24 25 26 27-28 29 Степень с рациональным идействительным показателями 3 Обобщающий урок по теме «Действительныечисла» 1 Контрольная работа «Действительные числа» 1 Введение в стереометрию. Аксиомы. (4 часа) Предмет стереометрии.Аксиомы стереометрии Некоторые следствия из аксиом Решение задач на применение аксиом стереометрии и их следствий 1 1 2 Параллельность прямых и плоскостей (15 часов) Параллельные прямые в пространстве. 1 Параллельность трех прямых Параллельность прямой и плоскости Решение задач напараллельность прямой и плоскости Скрещивающиеся прямые Точка, прямая и плоскость в пространстве, аксиомы стереометрии и следствия из них. 1 2 1 Взаимное расположение прямых и плоскостей в пространстве. Параллельность прямых и плоскостей в пространстве. Изображение простейших пространственных фигур на плоскости. Углы в пространстве.Вычисление элементов пространственных фигур (ребра, диагонали, углы). 30 31-32 Углы с сонаправленными сторонами. Угол между прямыми 1 Решение задач по теме «Взаимное расположение прямых в пространстве. Угол между прямыми» 2 33-34 Параллельные плоскости. Свойства параллельных плоскостей 2 35-37 Тетраэдр. Параллелепипед. Задачи на построение сечений Обобщающий урок по теме «Параллельность прямых и плоскостей» 3 38 39 Контрольная работа «Параллельность прямых и плоскостей» Степенная функция (14 часов) Степенная функция, еѐ свойства и график 40-42 43-44 Взаимно обратныефункции. Сложная функция 45-46 Равносильные уравнения и неравенства 47-50 Иррациональные уравнения. Иррациональные неравенства 51-52 Обобщающий урок по теме «Степенная функция» 1 1 3 2 2 4 2 Степень с действительным показателем, свойства степени. Степенная функцияи ее свойства и график. Иррациональные уравнения. Нули функции, промежутки знакопостоянства,монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность инечетность функций. Сложные функции.Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражениеотносительно координатных осей. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, 1 содержащих переменную под знаком модуля. Системы иррациональных уравнений. Взаимно обратные функции. Графики взаимно обратных функций. Уравнения, системы уравнений с параметром. 54-55 Показательная функция (12 часов) Показательная функция, еѐ свойства и график 2 56-58 Показательные уравнения 3 59-61 Показательные неравенства 3 Системы показательных уравнений и неравенств 2 Обобщающий урок по теме «Показательнаяфункция» 1 Степень с действительным показателем, свойства степени.Простейшие показательные уравнения и неравенства. Показательная функция и ее свойства и график. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность инечетность функций.Сложные функции. Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражениеотносительно координатных осей. Графические методы решения уравнений и неравенств. Решениеуравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных уравнений. Системы показательных неравенств. Уравнения, системыуравнений с параметром. 53 62-63 64 65 66 67 Контрольная работа «Степенная функция» Контрольная работа «Показательнаяфункция» 1 Перпендикулярность прямых и плоскостей (18 часов) Перпендикулярные прямые в пространстве. Параллельные прямые, перпендикулярные к 1 плоскости Признак 1 перпендикулярности прямой и плоскости Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве. Перпендикулярностьпрямых и плоскостей. Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в 68 69 70 71 72-75 76-77 78-80 81-82 Теорема о прямой, перпендикулярной к плоскости 1 Решение задач на перпендикулярность прямой и плоскости 1 Расстояние от точкидо плоскости. Теорема о трех перпендикулярах Угол между прямой и плоскостью Решение задач на применение теоремы о трех перпендикулярах, наугол между прямой и плоскостью Двугранный угол. Признак перпендикулярностидвух плоскостей Прямоугольный параллелепипед Обобщающий урокпо теме «Перпендикулярность прямых и плоскостей» пространстве. Теорема о трех перпендикулярах. Многогранники. Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора впространстве. Вычисление элементов пространственныхфигур (ребра, диагонали, углы). 1 1 4 2 3 2 Контрольная работа «Перпендикулярность прямых и плоскостей» Логарифмическая функция (18 часов) 84-85 Логарифмы 83 1 2 86-88 Свойства логарифмов 3 89-90 Десятичные и натуральные логарифмы. Формула перехода 2 Логарифм числа, свойства логарифма.Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмическихвыражений. Логарифмическиеуравнения и неравенства. Логарифмическая функция и ее свойства и график. Нули функции, промежутки знакопостоянства, монотонность. 91-92 93-95 96-98 99-100 101 102-104 105-108 109-111 Логарифмическая функция, еѐ свойстваи график Логарифмические уравнения Логарифмические неравенства Обобщающий урокпо теме «Логарифмическая функция» Контрольная работа «Логарифмическаяфункция» Многогранники (12 часов) Понятие многогранника.Призма Пирамида. Правильная пирамида. Усеченная пирамида Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрииправильных многогранников. Теорема Эйлера 2 3 3 2 1 3 4 3 112 Обобщающий урокпо теме «Многогранники. Площадь поверхности призмыи пирамиды» 1 113 Контрольная работа «Многогранники. Площадь поверхности призмы и пирамиды» 1 Наибольшее и наименьшее значение функции. Периодические функции. Четность инечетность функций.Сложные функции. Метод интервалов для решения неравенств. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражениеотносительно координатных осей. Графические методы решения уравнений и неравенств. Решениеуравнений и неравенств, содержащих переменную под знаком модуля. Системы логарифмических уравнений. Системы логарифмических неравенств. Уравнения, системыуравнений с параметром. Призма и пирамида.Правильная пирамида и правильная призма.Прямая пирамида. Элементы призмы ипирамиды. Вычисление элементов пространственных фигур (ребра, диагонали, углы). Площадь поверхности правильной пирамиды и прямой призмы. Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот.Свойства движений.Применение движений при решении задач. 114 115-116 117-119 Тригонометрические формулы (25 часов) Радианная мера угла Поворот точки вокруг начала координат Определение синуса,косинуса и тангенса угла Знаки синуса, косинуса и тангенса 122-123 Зависимость между синусом, косинусом и тангенсом одного итого же угла 120-121 124-125 Тригонометрические тождества Синус, косинус и тангенс углов α и -α 126 127-128 Формулы сложения 129-130 Синус, косинус итангенс двойного угла 1 2 3 2 2 2 1 2 131-132 Синус, косинус и тангенс половинного угла 2 2 133-135 Формулы приведения 3 Сумма и разность синусов. Сумма и разность косинусов 1 136 137 138 Обобщающий урокпо теме «Тригонометрическиеформулы» Контрольная работа «Тригонометрические формулы» Тригонометрические уравнения (15 часов) 1 1 Тригонометрическаяокружность, радианная мера угла.Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическоетождество и следствия из него. Значения тригонометрическихфункций для углов 0, 30, 45, 60, 90, 180, 270 ( 0,--- ,--- ,-- ,--- рад). 6 4 3 2 Формулы сложения тригонометрическихфункций, формулы приведения, формулыдвойного аргумента. Решение задач с использованием градусной меры угла. 139-141 Уравнение cos x = a 3 142-144 Уравнение sin x = a 3 145-146 Уравнение tg x = a 2 147-150 Решение тригонометрических уравнений. Примеры решения простейших тригонометрических неравенств Обобщающий урок по теме «Тригонометрические уравнения» Контрольная работа «Тригонометрическиеуравнения» 4 151-152 153 Итоговое повторение (17 часов) 154-163 Повторение Итоговая 164-165 контрольная работа 166-170 Резерв 2 1 10 2 5 Арккосинус, арксинус, арктангенс числа. Арккотангенсчисла. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Решение простейших тригонометрических неравенств. Метод интервалов для решения неравенств.Решение уравнений и неравенств, содержащих переменную под знаком модуля. Уравнения, системы уравнений с параметром. Powered by TCPDF (www.tcpdf.org)