НИВЕРСАЛИУМ ВСЕРОССИЙСКАЯ ЛАБОРАТОРНАЯ РАБОТА

ФИЗИКА **РАБОЧИЙ ЛИСТ** ДЛЯ 9–11 КЛАССОВ

ФИО	
ШКОЛА	
КЛАСС	

ПРАВИЛА РАБОТЫ

- внимательно читайте задания, используйте материалы к уроку, ответы и решения оформляйте письменно;
- при необходимости задавайте педагогу вопросы с целью получения необходимых сведений и данных.

ПО СЛЕДАМ ОТКРЫТИЙ ВЕЛИКОГО УЧЕНОГО

1 В XVIII веке развитию физики способствовали рост систематических исследований, увеличение количества публикаций и переписка ученых друг с другом. Одним из основных направлений стала наука о теплоте, в изучении которой оставил существенный след Михаил Васильевич Ломоносов. Ниже приведено его высказывание:

«Сие очень известно, что твердые тела нагреваются, когда одно о другое будет терто; однако между редкими опытами сие почитается, ежели железо чрез особливое искусство так ковано будет, чтобы молоты по нем били вкось, как кремнем из огнива огонь высекают; ибо тогда железо докрасна раскаляется».

Проверьте это высказывание. Положите монету на кусок деревянной доски и энергично потрите ее, прижимая к поверхности, в течение нескольких минут. Проверьте, как изменилась температура монеты. Объясните результат.

2 Ломоносов провел множество экспериментов, опровергая теорию теплорода. Свои идеи он развивал и публиковал в различных сборниках, в частности в работе «О опытах над чувственными свойствами тел». Ознакомьтесь с экспериментом, приведенным в данном издании:

Когда флорентинский термометр повесишь под стеклянный колокол и, воздух из него вытянув со всяким прилежанием, горячие угли к оному

Сравните свое объяснение с выводом Ломоносова:

«Отсюду явно быть кажется, что в сих случаях не иным каким образом теплота рождается, как только что огненная стихия, в телах сокровенная, в движение приведена бывает. И чрез сии опыты явствует, что во всяком теле есть некоторое количество огненныя стихии, по оному рассыпанныя».

Это высказывание сегодня выглядит несколько странно, но в те времена оно было революционным. Его целью было опровергнуть царившую на тот момент гипотезу о распространении тепла с помощью некоего теплорода. Считалось, что, когда теплород втекает в тело, его температура увеличивается, а когда вытекает — уменьшается.

близко поставишь, то увидишь, что вода в термометре поднимется и, после того как угли отложишь, скоро опустится. Также, ежели термометр под колоколом оставлен будет, вода в нем от теплоты также станет подниматься, а от стужи опускаться, как бы она стояла на воздухе.

Повторите эксперимент и проверьте, совпадет ли ваш вывод с мнением ученого.

ХОД РАБОТЫ

- 1. Заполните термостат смесью воды и льда, чтобы начальная температура была 0°С. Проверьте температуру с помощью термометра. Запишите начальное значение высоты столба воды в измерительной трубке.
- 2. Начните нагревать термостат. Обратите внимание, что повышение температуры будет происходить только после того, как весь лед растает.
- Как только весь лед растает и температура начнет повышаться, записывайте высоту столба жидкости в измерительной трубке при изменении температуры на 1°С. Продолжайте измерения до температуры 15°С.
- 4. При температурах выше 15°C измерения достаточно производить каждые 5°C (т.е. 20°, 25°, 30°, 35°, ... и т.д.). Измерения проводите до максимально возможной температуры, т.е. пока столб жидкости не достигнет края измерительной трубки.

- При достижении максимальной температуры выключите термостат.
 Можно остановить работу.
- 6. Сделайте вывод.

Сравните его с выводом М. В. Ломоносова:

«Из сего явствует, что теплота и без воздуха распространяется и, следовательно, есть материя, которая воздуха много тончае и в которой движении теплота состоит. Мы станем ее называть теплотворною материею. Аристотелическим штилем можно оную назвать огненною стихиею».

3 Ученые того времени охотно публиковали не только результаты своих исследований, но и методику проведения экспериментов. Ниже приводится совет М.В. Ломоносова о том, какой прибор лучше использовать при изучении тепловых свойств вещества.

Для опытов о теплоте хорошо употреблять термометр [фиг. 1], который состоит из воздуху и ртути, ABCDE. Часть шара AB наполнена воздухом, а другая его часть с частию трубки BCDF – ртутью. Ежели шар AB в кипяток

поставишь, то увидишь, что кипячая вода определенный степень теплоты в себя принимает, выше которого она иметь не может, для того что ртуть во все то время, когда вода кипит, стоит в G неподвижно, в котором она стала с самого начала. Вместо воды можно употребить другие жидкие материи. Откуду явно будет, что самый большой степень теплоты не во всякой материи равен, например, концентрированная кислота скорее вскипит, нежели вода.

E	
G	
P	61
	Â
	L PB
	I III

Р (атм)	T°C	Р (атм)	T°C
0.01	6,698	1,5	110.79
0.02	17.20	2.0	119.62
0.04	28.64	2.5	126.79
0.1	45.45	3.0	132.88
0.2	59.67	4.0	142.92
0.3	68.68	5.0	151.11
0.4	75.42	6.0	158.08
0.5	80.86	7.0	164.17
0.6	85.45	8.0	169.61
0.7	89.45	9.0	174.53
0.8	92.99	10.0	179.04
0.9	96.18	20.0	211.38
1.0	99.09	25.0	222.90
1.033	100.0	50.0	262.70
		100.0	309.53

Слева представлен прибор, который описывал ученый. Справа — результаты эксперимента, который группа современных исследователей провела в честь юбилея нашего великого соотечественника.

Проанализируйте таблицу, сравните со словами М. В. Ломоносова, приведенными выше, и сделайте вывод, что он не учел в своих рассуждениях.

НИВЕРСАЛИУМ ВСЕРОССИЙСКАЯ ЛАБОРАТОРНАЯ РАБОТА

Перед вами еще одна цитата М. В. Ломоносова:

«Понеже чрез искусство известно, что жидкие материи, в одно время будучи на солнце положены, неравный степень теплоты на себя принимают, для того не можно сомневаться, что и каждое твердое тело определенный степень теплоты получает, что можно исследовать

в измолотых или тертых материях, напр., в разных тертых землях, в песке, или в плавленных, как в свинце, воске, или и другими способами».

Выберите приборы, которые вам понадобятся для проверки выдвинутой гипотезы, и проведите соответствующий эксперимент.

Рис. 1. Металлический цилиндр.

Рис. 2. Стакан с водой.

Рис. 3. Термометр.

Рис. 4. Весы.

Рис. 5. Калориметр.

Рис. 6. Манометр.

ХОД РАБОТЫ

- 1. Поместите металлический цилиндр в стакан с горячей водой и измерьте термометром ее температуру. Она будет равна температуре цилиндра, т.к. через определенное время температура воды и цилиндра сравняется.
- 2. Налейте в калориметр холодную воду и измерьте ее температуру.
- 3. Поместите привязанный на нитке цилиндр в калориметр с холодной водой и измерьте установившуюся в результате теплообмена температуру.

При расчетах учтите, что, остывая, цилиндр отдает ровно такое же количество теплоты, какое вода получает при нагревании.

- 4. Для расчета нагрева воды воспользуйтесь формулой количества теплоты, $Q_1 = c_1 m_1 (t-t_1)$ где:
- c_1 удельная теплоемкость воды (табличная величина), $\frac{\mathcal{L} \varkappa}{\kappa r \ ^\circ C}$;
- $m_{1}-$ масса воды, которую можно определить с помощью весов, кг;
- t конечная температура воды и цилиндра, измеренная с помощью термометра, ${}_{0}C$;
- t_1 начальная температура холодной воды, измеренная с помощью термометра, ρ С.

При остывании металлического цилиндра выделится количество теплоты, $Q_2 = c_2 m_2(t_2 - t)$, где:

- c_2 удельная теплоемкость металла, из которого изготовлен цилиндр (искомая величина), $\frac{\mathcal{A} \varkappa}{\kappa_C \circ C}$;
- m_1 масса цилиндра, которую можно определить с помощью весов, кг;
- t_2 температура горячей воды и, соответственно, начальная температура цилиндра, измеренная с помощью термометра, ${}_{0}C$;
- t конечная температура воды и цилиндра, измеренная с помощью термометра, $_{o}\mathit{C}.$
- 5. Сделайте вывод о значении удельной теплоемкости материала цилиндра, используя формулу $c_2=\dots (\frac{\mathcal{A}^{\mathcal{K}}}{\kappa r\ ^{\circ}C}).$
- 6. Повторите эксперимент для цилиндра, сделанного из другого материала.
- 7. Совпал ли ваш вывод с выводом М.В. Ломоносова, приведенным в начале задания?